Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.660
Filtrar
1.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38563860

RESUMO

Force transmission at cell-cell junctions critically regulates embryogenesis, tissue homeostasis, and diseases including cancer. The cadherin-catenin linkage has been considered the keystone of junctional force transmission, but new findings challenge this paradigm, arguing instead that the nectin-afadin linkage plays the more important role in mature junctions in the intestinal epithelium.


Assuntos
Junções Intercelulares , Proteínas dos Microfilamentos , Nectinas , Caderinas/metabolismo , Cateninas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nectinas/metabolismo , Junções Intercelulares/química , Humanos
2.
Mol Biol Rep ; 51(1): 495, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587571

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most prevalent cancers that contribute to mortality among women worldwide. Despite contradictory findings, considerable evidence suggests that single nucleotide polymorphisms (SNPs) in the FSCN1 and HOTAIR genes may have a causative impact on the development of BC. This case-control study was conducted to evaluate the association of genotype frequency in FSCN1 rs852479, rs1640233, and HOTAIR rs920778 with susceptibility and prognosis of BC, as well as the impact of clinical stages and hormonal features. METHODS AND RESULTS: FSCN1 (rs852479, rs1640233) and HOTAIR (rs920778) were genotyped using TaqMan real-time PCR assay in 200 BC patients and 200 cancer-free controls, all representing Egyptian women. Genotypic analyses in association with clinicopathological factors and disease risk were assessed. As a result, a significant association with BC risk was observed for CC genotype frequency of FSCN1 rs852479 A > C (OR = 0.395, 95% CI 0.204-0.76, p-value = 0.005). However, no significant correlation was detected between the FSCN1 rs1640233 C > T and HOTAIR rs920778 C > T polymorphic variants and susceptibility to BC. Interestingly, CC genotype of FSCN1 rs1640233 was more likely to progress tumor size and lymph node invasion in BC cases (p-value = 0.04 and 0.02, respectively). Moreover, it was revealed that there was a non-significant correlation between the haplotype distributions of FSCN1 rs852479 and rs1640233 and the probability of BC. CONCLUSIONS: Based on the sample size and genetic characteristics of the subjects involved in the present study, our findings indicated that FSCN1 rs852479 may contribute to BC susceptibility in a sample of the Egyptian population.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Proteínas de Transporte , Estudos de Casos e Controles , Egito , Genótipo , Proteínas dos Microfilamentos , Polimorfismo de Nucleotídeo Único/genética
3.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
4.
Nat Commun ; 15(1): 3139, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605007

RESUMO

Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto/metabolismo
5.
BMC Med Genomics ; 17(1): 86, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627727

RESUMO

BACKGROUND: The interplay between exosomes and the tumor microenvironment (TME) remains unclear. We investigated the influence of exosomes on the TME in hepatocellular carcinoma (HCC), focusing on their mRNA expression profile. METHODS: mRNA expression profiles of exosomes were obtained from exoRBase. RNA sequencing data from HCC patients' tumors were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An exosome mRNA-related risk score model of prognostic value was established. The patients in the two databases were divided into high- and low-risk groups based on the median risk score value, and used to validate one another. Functional enrichment analysis was performed based on a differential gene prognosis model (DGPM). CIBERSORT was used to assess the abundance of immune cells in the TME. The correlation between the expression levels of immune checkpoint-related genes and DGPM was analyzed alongside the prediction value to drug sensitivity. RESULTS: A prognostic exosome mRNA-related 4-gene signature (DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) was constructed and validated. A prognostic nomogram had prognostic ability for HCC. The genes for this model are involved in extracellular matrix, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway. Expression of genes here had a positive correlation with immune cell infiltration in the TME. CONCLUSIONS: Our study results demonstrate that an exosome mRNA-related risk model can be established in HCC, highlighting the functional significance of the molecules in prognosis and risk stratification.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Exossomos/genética , RNA Mensageiro/genética , Microambiente Tumoral , Fosfatidilinositol 3-Quinases , Neoplasias Hepáticas/genética , Prognóstico , Fatores de Risco , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular
6.
J Med Virol ; 96(4): e29590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619024

RESUMO

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Doença de Alzheimer/genética , Encéfalo , Análise por Conglomerados , COVID-19/genética , Endocanabinoides , Proteínas dos Microfilamentos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina
7.
Methods Mol Biol ; 2794: 95-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630223

RESUMO

Proteins often exist and function as part of higher-order complexes or networks. A challenge is to identify the universe of proximal and interacting partners for a given protein. We describe how the high-activity promiscuous biotin ligase called TurboID is fused to the actin-binding peptide LifeAct to label by biotinylation proteins that bind, or are in close proximity, to actin. The rapid enzyme kinetics of TurboID allows the profiles of actin-binding proteins to be compared under different conditions, such as acute disruption of filamentous actin structures with cytochalasin D.


Assuntos
Actinas , Proteínas dos Microfilamentos , Citoesqueleto de Actina , Biotinilação , Física
8.
Sci Adv ; 10(17): eadl6554, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657057

RESUMO

MDMA (3,4-methylenedioxymethamphetamine) is a psychoactive drug with powerful prosocial effects. While MDMA is sometimes termed an "empathogen," empirical studies have struggled to clearly demonstrate these effects or pinpoint underlying mechanisms. Here, we paired the social transfer of pain and analgesia-behavioral tests modeling empathy in mice-with region-specific neuropharmacology, optogenetics, and transgenic manipulations to explore MDMA's action as an empathogen. We report that MDMA, given intraperitoneally or infused directly into the nucleus accumbens (NAc), robustly enhances the social transfer of pain and analgesia. Optogenetic stimulation of 5-HT release in the NAc recapitulates the effects of MDMA, implicating 5-HT signaling as a core mechanism. Last, we demonstrate that systemic MDMA or optogenetic stimulation of NAc 5-HT inputs restores deficits in empathy-like behaviors in the Shank3-deficient mouse model of autism. These findings demonstrate enhancement of empathy-related behaviors by MDMA and implicate 5-HT signaling in the NAc as a core mechanism mediating MDMA's empathogenic effects.


Assuntos
Empatia , Proteínas dos Microfilamentos , N-Metil-3,4-Metilenodioxianfetamina , Núcleo Accumbens , Optogenética , Serotonina , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Empatia/efeitos dos fármacos , Serotonina/metabolismo , Camundongos , Masculino , Comportamento Animal/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Transtorno Autístico/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
Sheng Li Xue Bao ; 76(2): 341-345, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658382

RESUMO

There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.


Assuntos
Actinas , Proteínas dos Microfilamentos , Proteínas Nucleares , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Humanos , Animais , Actinas/metabolismo , Actinas/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia
10.
Sci Rep ; 14(1): 9321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653789

RESUMO

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Assuntos
Alopecia , Anodontia , Senescência Celular , Fibroblastos , Transtornos do Crescimento , Proteínas dos Microfilamentos , Humanos , Fibroblastos/metabolismo , Senescência Celular/genética , Alopecia/metabolismo , Alopecia/patologia , Alopecia/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/deficiência , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/metabolismo , Actinas/metabolismo , Progéria/genética , Progéria/patologia , Progéria/metabolismo
11.
PLoS One ; 19(4): e0302045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630692

RESUMO

In this work, a Python framework for characteristic feature extraction is developed and applied to gene expression data of human fibroblasts. Unlabeled feature selection objectively determines groups and minimal gene sets separating groups. ML explainability methods transform the features correlating with phenotypic differences into causal reasoning, supported by further pipeline and visualization tools, allowing user knowledge to boost causal reasoning. The purpose of the framework is to identify characteristic features that are causally related to phenotypic differences of single cells. The pipeline consists of several data science methods enriched with purposeful visualization of the intermediate results in order to check them systematically and infuse the domain knowledge about the investigated process. A specific focus is to extract a small but meaningful set of genes to facilitate causal reasoning for the phenotypic differences. One application could be drug target identification. For this purpose, the framework follows different steps: feature reduction (PFA), low dimensional embedding (UMAP), clustering ((H)DBSCAN), feature correlation (chi-square, mutual information), ML validation and explainability (SHAP, tree explainer). The pipeline is validated by identifying and correctly separating signature genes associated with aging in fibroblasts from single-cell gene expression measurements: PLK3, polo-like protein kinase 3; CCDC88A, Coiled-Coil Domain Containing 88A; STAT3, signal transducer and activator of transcription-3; ZNF7, Zinc Finger Protein 7; SLC24A2, solute carrier family 24 member 2 and lncRNA RP11-372K14.2. The code for the preprocessing step can be found in the GitHub repository https://github.com/AC-PHD/NoLabelPFA, along with the characteristic feature extraction https://github.com/LauritzR/characteristic-feature-extraction.


Assuntos
Envelhecimento , Aprendizado de Máquina , Humanos , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular
12.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
13.
BMC Cancer ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509504

RESUMO

BACKGROUND: Biliary tract cancer (BTC) is a relatively rare but aggressive gastrointestinal cancer with a high mortality rate. Cancer stem cell (CSC) populations play crucial roles in tumor biology and are responsible for the low response to anti-cancer treatment and the high recurrence rate. This study investigated the role of Transgelin-2 (TAGLN2), overexpressed in CSC in BTC cells, and analyzed its expression in patient tissues and serum to identify potential new targets for BTC. METHODS: TAGLN2 expression was suppressed by small-interfering or short hairpin RNAs, and its effects on tumor biology were assessed in several BTC cell lines. Furthermore, the effects of TAGLN2 silencing on gemcitabine-resistant BTC cells, differentially expressed genes, proteins, and sensitivity to therapeutics or radiation were assessed. TAGLN2 expression was also assessed using western blotting and immunohistochemistry in samples obtained from patients with BTC to validate its clinical application. RESULTS: Suppression of TAGLN2 in BTC cell lines decreased cell proliferation, migration, invasion, and tumor size, in addition to a reduction in CSC features, including clonogenicity, radioresistance, and chemoresistance. TAGLN2 was highly expressed in BTC tissues, especially in cancer-associated fibroblasts in the stroma. Patients with a low stromal immunohistochemical index had prolonged disease-free survival compared to those with a high stromal immunohistochemical index (11.5 vs. 7.4 months, P = 0.013). TAGLN2 expression was higher in the plasma of patients with BTC than that in those with benign diseases. TAGLN2 had a higher area under the curve (0.901) than CA19-9, a validated tumor biomarker (0.799; P < 0.001). CONCLUSION: TAGLN2 plays a critical role in promoting BTC cell growth and motility and is involved in regulating BTC stemness. Silencing TAGLN2 expression enhanced cell sensitivity to radiation and chemotherapeutic drugs. The expression of TAGLN2 in patient tissue and plasma suggests its potential to serve as a secretory biomarker for BTC. Overall, targeting TAGLN2 could be an appropriate therapeutic strategy against advanced cancer following chemotherapy failure.


Assuntos
Neoplasias do Sistema Biliar , Proteínas dos Microfilamentos , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/genética , Linhagem Celular Tumoral
14.
Hematology ; 29(1): 2330285, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511641

RESUMO

We aimed to investigate the role and mechanism of LSP1 in the progression of acute myelogenous leukemia. In this study, we established shLSP1 cell line to analyze the function of LSP1 in AML. We observed high expression of LSP1 in AML patients, whereas it showed no expression in normal adults. Furthermore, we found that LSP1 expression was associated with disease prognosis. Our results indicate that LSP1 plays a crucial role in mediating proliferation and survival of leukemia cells through the KSR/ERK signaling pathway. Additionally, LSP1 promotes cell chemotaxis and homing by enhancing cell adhesion and migration. We also discovered that LSP1 confers chemotactic ability to leukemia cells in vivo. Finally, our study identified 12 genes related to LSP1 in AML, which indicated poor survival outcome in AML patients and were enriched in Ras and cell adhesion signaling pathways. Our results revealed that the overexpression of LSP1 is related to the activation of the KSR/ERK signaling pathway, as well as cell adhesion and migration in AML patients. Reducing LSP1 expression impair AML progression, suggesting that LSP1 may serve as a potential drug therapy target for more effective treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Transdução de Sinais , Adulto , Humanos , Movimento Celular , Linhagem Celular , Leucemia Mieloide Aguda/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
15.
Aging (Albany NY) ; 16(5): 4789-4810, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451194

RESUMO

This study aimed to explore the regulatory role of SORBS1 in macrophage polarization and the PI3K/AKT signaling pathway, as well as analyze its mechanism in epithelial-mesenchymal transition (EMT) of breast cancer cells. We established SORBS1-overexpressing and knockout cell lines and verified the effects of SORBS1 on cell viability, invasion, and migration by phenotyping experiments and assaying the expression of associated proteins. Furthermore, we established a breast cancer cell and macrophage co-culture system to validate the effect of SORBS1 expression on macrophage polarization and killing of breast cancer cells. Bioinformatics analysis showed that SORBS1 was lowly expressed in breast cancer (BRCA) samples and highly expressed in healthy tissues. Decreased SORBS1 expression was associated with poor prognosis, and the PI3K/AKT signaling pathway was the most significantly enriched pathway. In vitro experiments showed that high expression of SORBS1 inhibited the migration of breast cancer cells, as well as the PI3K/AKT signaling pathway, and blocked EMT of these cells. In addition, SORBS1 induced macrophage polarization to the M1-type and enhanced the killing effect on breast cancer cells in the co-culture system. In conclusion, we successfully verified that SORBS1 inhibits the invasion and migration of breast cancer cells, induces macrophage M1-type polarization, and blocks EMT of breast cancer cells, and it may act by regulating the PI3K/AKT signaling pathway.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Transdução de Sinais , Macrófagos/metabolismo , Movimento Celular/genética , Proliferação de Células , Proteínas dos Microfilamentos/metabolismo
16.
ACS Nano ; 18(12): 8919-8933, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489155

RESUMO

The orchestrated assembly of actin and actin-binding proteins into cytoskeletal structures coordinates cell morphology changes during migration, cytokinesis, and adaptation to external stimuli. The accurate and unbiased visualization of the diverse actin assemblies within cells is an ongoing challenge. We describe here the identification and use of designed ankyrin repeat proteins (DARPins) as synthetic actin binders. Actin-binding DARPins were identified through ribosome display and validated biochemically. When introduced or expressed inside living cells, fluorescently labeled DARPins accumulated at actin filaments, validated through phalloidin colocalization on fixed cells. Nevertheless, different DARPins displayed different actin labeling patterns: some DARPins labeled efficiently dynamic structures, such as filopodia, lamellipodia, and blebs, while others accumulated primarily in stress fibers. This differential intracellular distribution correlated with DARPin-actin binding kinetics, as measured by fluorescence recovery after photobleaching experiments. Moreover, the rapid arrest of actin dynamics induced by pharmacological treatment led to the fast relocalization of DARPins. Our data support the hypothesis that the localization of actin probes depends on the inherent dynamic movement of the actin cytoskeleton. Compared to the widely used LifeAct probe, one DARPin exhibited enhanced signal-to-background ratio while retaining a similar ability to label stress fibers. In summary, we propose DARPins as promising actin-binding proteins for labeling or manipulation in living cells.


Assuntos
Actinas , Proteínas de Repetição de Anquirina Projetadas , Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo
17.
Cell Adh Migr ; 18(1): 1-17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38555517

RESUMO

Molecule interacting with CasL 1 (MICAL1) is a crucial protein involved in cell motility, axon guidance, cytoskeletal dynamics, and gene transcription. This pan-cancer study analyzed MICAL1 across 33 cancer types using bioinformatics and experiments. Dysregulated expression, diagnostic potential, and prognostic value were assessed. Associations with tumor characteristics, immune factors, and drug sensitivity were explored. Enrichment analysis revealed MICAL1's involvement in metastasis, angiogenesis, metabolism, and immune pathways. Functional experiments demonstrated its impact on renal carcinoma cells. These findings position MICAL1 as a potential biomarker and therapeutic target in specific cancers, warranting further investigation into its role in cancer pathogenesis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Movimento Celular , Biologia Computacional , Citoesqueleto , Neoplasias Renais/genética , 60542 , Oxigenases de Função Mista , Proteínas dos Microfilamentos
18.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 586-596, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449390

RESUMO

Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide. It is reported that the endothelial-to-mesenchymal transition (EndMT) in glomerular endothelial cells plays an important role in DN. As a specific form of epithelial-to-mesenchymal transition, EndMT may involve common regulators of epithelial-to-mesenchymal transition. Fascin has been shown to mediate epithelial-to-mesenchymal transition. In addition, SirT7 has been confir med to contribute to inflammation in hyperglycemic endothelial cells via the modulation of gene transcription. In this study, we speculate that SirT7 modulates fascin transcription and is thus involved in EndMT in hyperglycemic glomerular endothelial cells. Our data indicate that α-smooth muscle actin (α-SMA) and fascin levels are increased, while CD31 levels are decreased in the kidneys of DN rats. Consistently, our cellular experiments reveal that high glucose treatment elevates fascin levels and induces EndMT in human glomerular endothelial cells (HGECs). Moreover, silencing of fascin inhibits EndMT in hyperglycaemic HGECs. In addition, SirT7 is found to be decreased in hyperglycemic cells and in the kidneys of DN mice. Moreover, the inhibition of SirT7 increases fascin level and mediates EndMT. An increase in SirtT7 expression decreases fascin expression, inhibits EndMT, and improves renal function in hyperglycemic cells and DN mice. SirT7 is found to bind to the promoter region of fascin. In summary, the present study indicates that SirT7 transcribes fascin to contribute to hyperglycemia-induced EndMT in DN patients.


Assuntos
Proteínas de Transporte , Diabetes Mellitus , Nefropatias Diabéticas , Proteínas dos Microfilamentos , Humanos , Ratos , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , 60483 , Rim/metabolismo , Transição Epitelial-Mesenquimal , Diabetes Mellitus/metabolismo
19.
Pathol Res Pract ; 256: 155189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452581

RESUMO

When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.


Assuntos
Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Movimento Celular/genética , Neoplasias Hepáticas/genética , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/genética
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508474

RESUMO

Metastasis promotes the development of tumors and is a significant cause of gastric cancer death. For metastasis to proceed, tumor cells must become mobile by modulating their cytoskeleton. MICAL1 (Molecule Interacting with CasL1) is known as an actin cytoskeleton regulator, but the mechanisms by which it drives gastric cancer cell migration are still unclear. Analysis of gastric cancer tissues revealed that MICAL1 expression is dramatically upregulated in stomach adenocarcinoma (STAD) samples as compared to noncancerous stomach tissues. Patients with high MICAL1 expression had shorter overall survival (OS), post-progression survival (PPS) and first-progression survival (FPS) compared with patients with low MICAL1 expression. RNAi-mediated silencing of MICAL1 inhibited the expression of Vimentin, a protein involved in epithelial-mesenchymal transition. This effect correlates with a significant reduction in gastric cancer cell migration. MICAL1 overexpression reversed these preventive effects. Immunoprecipitation experiments and immunofluorescence assays revealed that PlexinA1 forms a complex with MICAL1. Importantly, specific inhibition of PlexinA1 blocked the Rac1 activation and ROS production, which, in turn, impaired MICAL1 protein stability by accelerating MICAL1 ubiquitin/proteasome-dependent degradation. Overexpression of PlexinA1 enhanced Rac1 activation, ROS production, MICAL1 and Vimentin expressions, and favored cell migration. In conclusion, this study identified MICAL1 as an important facilitator of gastric cancer cell migration, at least in part, by affecting Vimentin expression and PlexinA1 promotes gastric cancer cell migration by binding to and suppressing MICAL1 degradation in a Rac1/ROS-dependent manner.


Assuntos
Neoplasias Gástricas , Humanos , 60542 , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina/metabolismo , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...